
1!
CIS 422/522

CIS 422/522 Fall 2012! 1!

Achieving System Qualities Through  
Software Architecture II!

The meaning of “design”!
Modules and the module structure!

CIS 422/522 Fall 2012! 2!

Qualities Established in Architecture!
Behavioral (observable)!

•  Performance!
•  Security !
•  Availability !
•  Reliability!
•  Usability 

!
!

! 
Properties resulting from the
properties of components,
connectors and interfaces
that exist at run time.!

Developmental Qualities!
•  Modifiability(ease of change)!
•  Portability!
•  Reusability!
•  Ease of integration !
•  Understandability!
•  Provide independent work

assignments 
!
!Properties resulting from the
properties components,
connectors and interfaces
that exist at design time
whether or not they have any
distinct run-time
manifestation.!

CIS 422/522 Fall 2012! 3!

Functionality, Architecture, and
Quality Attributes!

•  Functionality and quality attributes are
orthogonal!

•  Achieving quality attributes must be
considered throughout design,
implementation, and deployment!

•  Satisfactory results depends on:!
–  Getting the big picture (architecture) right!
–  Then getting the details (implementation) right!

2!
CIS 422/522

CIS 422/522 Fall 2012! 4!

Example: Performance!

•  Ex: Performance depends on!
–  How much inter-component communication is

necessary (Arch)!
–  What functionality has been allocated to each

component (Arch)!
–  How shared resources are allocated (Arch)!
–  The choice of algorithms to implement functionality

(Non-arch)!
–  How algorithms are coded (Non-arch)!

CIS 422/522 Fall 2012! 5!

Product Development Cycle and
Architecture!

Business Goals
 Hardware
 Software
 Marketing
 other

Product Planning
 Economic Evaluation
 Development Strategy
 Marketing Strategy
 Prioritization

Requirements
 Capabilities
 Qualities
 Reusability

Architecture
 Tradeoffs of
 quality goals

Strategic
Plan

ConOps or BRD
Business

Requirements
Definition

SRS
Software

Requirements
Specification

Architecture
Design

Documents

Traceability

Detailed
Design

Internal
Design

Documentation

Code

Stakeholder goals

Design decisions,
tradeoffs and constraints Goal: Keep architectural

design decisions in synch
with developmental goals
•  ConOps <> Req <> Design
•  Traceability to code

CIS 422/522 Fall 2012! 6!

Software Engineering Architecture!

•  Goal is to keep developmental goals and
architectural capabilities in synch!

•  Proceed from an understanding of desired
qualities to an acceptable system design!
–  Balance of stakeholder priorities and constraints!
–  Requires making design tradeoffs!
–  Documentation must communicate how this is

accomplished!

3!
CIS 422/522

CIS 422/522 Fall 2012! 7!

Implications for the Development
Process!

Implies need to address architectural concerns in the
development process:!

•  Understanding the “business case” for the system!
•  Understanding the quality requirements!
•  Designing the architecture!
•  Representing and communicating the architecture!
•  Analyzing or evaluating the architecture!
•  Implementing the system based on the architecture!
•  Ensuring the implementation conforms to the

architecture!

CIS 422/522 Fall 2012! 8!

What is “design?”!

CIS 422/522 Fall 2012! 9!

Meaning of “Design”!

•  What does it mean to say that we are going to
“design the software?”!

•  What is the basis for making a design decision?!
•  How do we know when we are done?!
•  If we did a good job? What makes a good design?!

4!
CIS 422/522

CIS 422/522 Fall 2012! 10!

The Design Space!

•  A Design: is (a representation of) a
solution to a problem !
–  Represents a set of choices!

•  Typically very large set of possible
choices!

•  Must navigate through possibilities!
•  Invariably requires tradeoffs!

–  Possible choices are limited by
assumptions and constraints!

•  Must be ISO 2000 compliant,
legacy compatible, etc.!

•  May not use v.1 library routines!
–  Some designs are better than

others (notion of good design)!

Problem
Space!

Possible
Solutions “Good” 

solutions  
(designs)!

Our 
design!x x x

x x x

Design  
Constrains!

CIS 422/522 Fall 2012! 11!

Design Means…!
•  Design Goals: the purpose of design is to solve

some problem in a context of assumptions and
constraints!
–  Solution: acceptable balance of system qualities!
–  Assumptions: what must be true of the design!
–  Constraints: what should not be true!

•  Process: design proceeds through a sequence of
decisions!
–  A good decision brings us closer to the design goals!
–  An idealized design process systematically makes

good decisions!
–  Any real design process is chaotic!

•  Good Design: by definition a good design is one
that satisfies the design goals!

CIS 422/522 Fall 2012! 12!

Which structures should we use?!

•  Choice of structure depends the specific design
goals !

•  Compare to architectural blueprints!
–  Different blueprint for load-bearing structures,

electrical, mechanical, plumbing!

Structure! Components! Interfaces! Relationships!

Calls Structure! Programs
(methods,
services)!

Program interface and
parameter declarations!

Invokes with
parameters  
(A calls B)!

Data Flow! Functional tasks! Data types or
structures!

Sends-data-to!

Process! Sequential
program (process,
thread, task)!

Scheduling and
synchronization
constraints!

Runs-concurrently-
with, excludes,
precedes!

5!
CIS 422/522

CIS 422/522 Fall 2012! 13!

Elements of Architectural Design!

•  Design goals!
–  What are we trying to accomplish in the

decomposition?!
•  Relevant Structure!

–  How to we capture and communicate design
decisions?!

–  What are the components, relations, interfaces?!
•  Decomposition principles!

–  How do we distinguish good design decisions?!
–  What decomposition (design) principles support the

objectives?!
•  Evaluation criteria!

–  How do I tell a good design from a bad one?!
13

CIS 422/522 Fall 2012! 14!

Examples of Key Architectural
Structures!

•  Module Structure!
–  Decomposition of the system into work

assignments (called modules)!
–  Most influential design time structure!

•  Modifiability, independent work assignments, concurrent
development, maintainability, reusability,
understandability, etc.!

•  Uses Structure!
–  Determine which modules may use one another’s

services!
–  Determines subsetability, ease of integration!

CIS 422/522 Fall 2012! 15!

Designing the Module Structure!

6!
CIS 422/522

CIS 422/522 Fall 2012! 16!

Modularization!

•  For any large, complex system, must divide
the coding into work assignments (WBS)!

•  Each work assignment is called a “module”!
•  Properties of a “good” module structure!

–  Parts can be designed independently!
–  Parts can be tested independently!
–  Parts can be changed independently!
–  Integration goes smoothly!

CIS 422/522 Fall 2012! 17!

Modularization Goals!
•  Reduces complexity, improves manageability!
•  Coding!

–  Can write modules with little knowledge of other modules!
–  Replace modules without reassembling the whole system!

•  Managerial!
–  Allows concurrent development !
–  Avoids “Mythical Man Month” effect (“adding people to a late

software project makes it later”)!
•  Flexibility/Maintainability!

–  Anticipated changes affect only a small number of modules
(preferably one)!

–  Can calculate the impact and cost of change!
•  Review/communicate!

–  Can understand or review the system one module at a time!

CIS 422/522 Fall 2012! 18!

Notional Modules!

Problem

Interface

Encapsulated

Interface

Encapsulated Interface

Encapsulated

Interface

Encapsulated

Interface

Encapsulated

7!
CIS 422/522

CIS 422/522 Fall 2012! 19!

What is a module?!

•  Concept due to David Parnas (conceptual basis for
objects)!

•  A module is characterized by two things:!
–  Its interface: services that the module provides to other parts

of the systems!
–  Its secrets: what the module hides (encapsulates). Design/

implementation decisions that other parts of the system
should not depend on!

•  Modules are abstract, design-time entities !
–  Modules are “black boxes” – specifies the visible properties

but not the implementation!
–  May, or may not, directly correspond to programming

components like classes/objects!
•  E.g., one module may be implemented by several objects!

CIS 422/522 Fall 2012! 20!

A Simple Module!

•  A simple integer stack!
–  push: push integer on stack top!
–  pop: remove top element!
–  top: get value of top element!

•  What information is on the
interface?!

•  What are the secrets?!
•  What information is missing?!
•  Why is this an abstraction?!

stack
int top()

push(int)

pop()

CIS 422/522 Fall 2012! 21!

A Simple Module!

•  A simple integer stack!
•  The interface specifies what a

programmer needs to know to use
the stack correctly, e.g.!

–  push: push integer on stack top!
–  pop: remove top element!
–  top: get value of top element!

•  The secrets (encapsulated) any
details that might change from one
implementation to another!

–  Data structures, algorithms!
–  Details of class/object structure!

•  A module spec is abstract:
describes the services provided but
allows many possible
implementations!

•  Note: a real spec needs much more
than this (discuss later)!

stack
int top()

push(int)

pop()

8!
CIS 422/522

CIS 422/522 Fall 2012! 22!

Why these properties?!

Module Implementer!
•  The specification tells me

exactly what capabilities my
module must provide to users!

•  I am free to implement it any
way I want to!

•  I am free to change the
implementation if needed as
long as I don’t change the
interface!

Module User!
•  The specification tells me how

to use the module’s services
correctly!

•  I do not need to know anything
about the implementation
details to write my code!

•  If the implementation changes,
my code stays the same!

Key idea: the abstract interface specification defines!
a contract between a module’s developer and its users  

that allows each to proceed independently!

CIS 422/522 Fall 2012! 23!

Is a module a class/object?!

•  The programming language concepts of classes and
objects are based on Parnas’ concept of modules!

•  To separate design-time concerns from coding
issues, however, they are not the same thing!
–  A module must be a work assignment at design time, does

not dictate run-time structures!
–  Coder free to implement with a different class structure as

long as the interface capabilities are provided!
–  Coder free to make changes as long as the interface does

not change!
•  In simple cases, we will often implement each

module as a class/object!

CIS 422/522 Fall 2012! 24!

Questions?!

